Near α-labelings of bipartite graphs
نویسندگان
چکیده
An a-labeling of a bipartite graph G with n edges easily yields both a cyclic G-decomposition of Kn,n and of K2nx+1 for all positive integers x. A ,B-Iabeling (or graceful labeling) of G yields a cyclic decomposition of K2n+1 only. It is well-known that certain classes of trees do not have a-Iabelings. In this article, we introduce the concept of a near a-labeling of a bipartite graph, and prove that if a graph G with n edges has a near a-labeling, then there is a cyclic G-decomposition of both Kn,n and K2nx+1 for all positive integers x. We conjecture that all trees have a near a-labeling and show that certain classes of trees which are known not to have an a-labeling have a near a-labeling.
منابع مشابه
Balanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations
A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...
متن کاملA new application of the ⊗h-product to α-labelings
The weak tensor product was introduced by Snevily as a way to construct new graphs that admit α-labelings from a pair of known α-graphs. In this article, we show that this product and the application to α-labelings can be generalized by considering as a second factor of the product, a family Γ of bipartite (p, q)-graphs, p and q fixed. The only additional restriction that we should consider is ...
متن کاملConstructing Graceful Graphs with Caterpillars
A graceful labeling of a graph G of size n is an injective assignment of integers from {0, 1,..., n} to the vertices of G, such that when each edge of G has assigned a weight, given by the absolute dierence of the labels of its end vertices, the set of weights is {1, 2,..., n}. If a graceful labeling f of a bipartite graph G assigns the smaller labels to one of the two stable sets of G, then f ...
متن کامل(Di)graph products, labelings and related results
Gallian’s survey shows that there is a big variety of labelings of graphs. By means of (di)graphs products we can establish strong relations among some of them. Moreover, due to the freedom of one of the factors, we can also obtain enumerative results that provide lower bounds on the number of nonisomorphic labelings of a particular type. In this talk, we will focus in three of the (di)graphs p...
متن کاملOn d-graceful labelings
We introduce a generalization of the well known concept of a graceful labeling. Given a graph Γ with e = d · m edges, we call d-graceful labeling of Γ an injective function from(m + 1)}. In the case of d = 1 and of d = e we find the classical notion of a graceful labeling and of an odd graceful labeling, respectively. Also, we call d-graceful α-labeling of a bipartite graph Γ a d-graceful label...
متن کاملOn the cyclic decomposition of circulant graphs into bipartite graphs
It is known that if a bipartite graph G with n edges possesses any of three types of ordered labelings, then the complete graphK2nx+1 admits a cyclic G-decomposition for every positive integer x. We introduce variations of the ordered labelings and show that whenever a bipartite graph G admits one of these labelings, then there exists a cyclic G-decomposition of an infinite family of circulant ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 21 شماره
صفحات -
تاریخ انتشار 2000